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Impedance matching compensators are investigated for structural±acoustic
control. The primary method for deriving these compensators is the
minimization of acoustic power ¯ow emanating from the structure±acoustic
boundary. This work builds upon frequency domain wave control concepts.
Unfortunately, due to the complexity of the solution, power ¯ow minimization
via Wiener ®ltering can only be used for extremely simple situations. Therefore,
it is recast in a state space formulation that has a wealth of numerical tools,
most notably the linear quadratic Gaussian (LQG) design technique. The
equivalence between power ¯ow minimization and the solution of the LQG
problem is demonstrated on a simple one-dimensional structural±acoustic
sample problem. To illustrate the LQG power ¯ow derivation for more realistic
systems, it is applied to a two-dimensional sample problem.
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1. INTRODUCTION

Acoustic launch loads and their impact on payloads enclosed in aerodynamic
fairings have begun to receive attention in the last several years [1±3]. Launch
loads account for 40% of ®rst day spacecraft failures. Reducing these loads gives
the opportunity to use more off-the-shelf components, making the spacecraft
cheaper and increasing the chance of mission success.
While payload isolation is a fairly well developed ®eld, acoustic load

alleviation has not received much attention. This is primarily due to the fact that
the acoustic disturbances are weakly correlated with structural measurements,
making adaptive feedforward schemes dif®cult. Feedback control is an
alternative to feedforward control, but its performance is driven by the accuracy
of a descriptive model of the structural±acoustic behavior. Fully coupled
structural±acoustic models suffer from the sheer size required to achieve any
®delity in the model. Another disadvantage of the fully coupled model is that a
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different model must be formulated each time the payload geometry is changed.
A locally coupled structural±acoustic model alleviates these disadvantages by not
including a detailed model of the interior acoustics. The locally coupled model
naturally leads to a particular control design technique: impedance matching.
Impedance matching has been used for purely structural systems for some

time [4±6], but only recently has it been extended to structural±acoustic systems
[7, 8]. In reference [8], Glaese et al. derive an impedance matching control law
for a structural±acoustic system consisting of a one-dimensional acoustic
waveguide connected to a single-degree-of-freedom structure. This impedance
matching control law was compared to compensators designed using only a
structural model and a fully coupled structural±acoustic model. For this simple
academic example, it was shown that impedance matching achieved nearly 99%
of the performance of a fully coupled model while satisfying all the imposed
constraints on the control architecture: insensitivity to payload geometry and
actuation/sensing that conforms to the structural geometry (i.e., no extra
microphones or speakers in the acoustic ®eld). The limitation of this result is
that it is derived speci®cally for the one-dimensional case, where the acoustics
can be simply described by leftward and rightward travelling waves. For more
realistic situations, where the acoustics are three-dimensional and the structure is
two-dimensional in nature, the impedance matching derivation is much more
dif®cult, if not impossible. Moreover, the impedance matching design in
reference [8] placed no limitations on control effort, possibly leading to
dif®culties in practical implementation. The results from reference [8], however,
do indicate that the impedance matching approach does bridge the gap between
the simplistic control design using only a structural model and the complex,
expensive control design using a fully coupled structural±acoustic model. Thus,
the purpose of this paper is to extend the impedance matching design in
reference [8] to higher dimensional situations and to include penalties on the
control effort.
The derivation of the impedance matching control law relies on the

minimization of the power ¯ow at the structure±acoustic boundary to determine
the form of the compensator [4, 5]. This approach makes use of a local wave
model of the structure±acoustic boundary in which the details of the acoustic
®eld, namely the acoustic modes, are not necessary. This structural±acoustic
wave model is equivalent to a state-space model of the structure with the
acoustic pressure included as a disturbance affecting the structural dynamics.
This structural model is much more readily available for realistic situations.
Since power ¯ow can be written as a quadratic function of the travelling wave

amplitudes, this suggests that an equivalency might be found between power
¯ow minimization and a state-space control design technique, namely the linear
quadratic Gaussian (LQG) technique, which requires several weighting matrices
to determine the regulator and estimator gains. Thus, if the power ¯ow
emanating from the structure±acoustic boundary can be captured in these
weighting matrices, LQG can be used to easily solve for the structural±acoustic
impedance match in realistic situations. This equivalency will be demonstrated
for a simple structural±acoustic system, shown in Figure 1.
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This structural±acoustic system consists of a one-dimensional acoustic
waveguide with a single-degree-of-freedom structure on the left end and
disturbance source on the right end. The single-degree-of-freedom structure on
the left end consists of a mass, spring, damper, and force, while the disturbance
source is simply a massless piston that undergoes prescribed accelerations, �ud.
For this simple structural±acoustic system, the acoustics at any point in the

waveguide obey the wave equation [9] given by

@2P=@x2 ÿ �1=c20�@2P=@t2 � 0, �1�
where c0 is the speed of sound. The structure, on the other hand, obeys the
second order differential equation

m�u� c _u� ku � fÿ AP, �2�
where the acoustic pressure acts as a forcing term on the structural dynamics. At
the structure±acoustic boundary, the relationship between acoustic pressure and
structural motion is given by

@P=@x � ÿr0�u, �3�
where r0 is the ambient density of the acoustic medium. The locally coupled
structural±acoustic model is formed by ignoring the reverberant acoustics.
Instead, only the force on the structure caused by the acoustic pressure and the
in¯uence of structural motion on the acoustic ®eld are included since they are
suf®cient to capture the mechanisms which govern how power is transferred
from the acoustic medium to the structure and vice versa. This ®rst effect is seen
in the second term on the right side of equation (2), while the second effect is
seen in equation (3). This system will now be used to derive impedance matching
compensators using power ¯ow minimization and LQG.

2. POWER FLOW MINIMIZATION

Average acoustic power per unit area radiated at a structure±acoustic
boundary can be written in a quadratic form given by reference [9]

P � 1

T

�T
0

P�t� _u�t� dt, �4�
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Figure 1. One-dimensional acoustic waveguide coupled with a one-degree-of-freedom structure.
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where P(t) is the acoustic pressure, and _u�t� is the acoustic particle velocity (also
the structural velocity). If one considers a vibrating piston with area, A, the
average acoustic power ¯ow becomes

P � 1

T

�T
0

P�t�A _u�t� dt: �5�

Using the relationship between _u�t� and the pressure gradient, @P/@x, this
average power ¯ow can be written in terms of the so-called acoustic state
variables P and @P/@x. Furthermore, if one uses the Power Theorem, a variation
of Parseval's Theorem, one can write the average power ¯ow in the frequency
domain as

P � 1

2p

��1
ÿ1

AP�o� _u�o� do � 1

2p

��1
ÿ1

P�o�A ÿ 1

jor0

@P�o�
@x

� �
do: �6�

We can now introduce leftward and rightward traveling waves, such that

P�x, t� � Pl e
ik̂x�iot � Pr e

ÿik̂x�iot, �7�
where k̂ is the wave number, which can be thought of as a spatial frequency, and
is also related to temporal frequency through the dispersion relation

k̂ � o=c0: �8�
The acoustic state variables, then, are related to the wave amplitudes through
the matrix equation

P

@P=@x

� �
� 1

ik̂

1

ÿik̂
� �

Pl

Pr

� �
: �9�

Using these relations, one can show [5] that the power ¯ow has the form

P�o� � 1
2�wi�o�Hwo�o�H�Pm

wi�o�
wo�o�
� �

: �10�

In order to avoid confusion with the structure±acoustic boundary power ¯ow
matrix, Pm, the incoming and outgoing pressure wave amplitudes relative to the
structure±acoustic boundary are denoted by wi and wo, respectively. The power
¯ow matrix for the acoustic case is given by (incoming power is de®ned to be
negative)

Pm � Pii Pio

Poi Poo

� �
� 2

r0c0
ÿA 0
0 A

� �
: �11�

The incoming acoustic waves are thought of as a disturbance to the structure.
In order to reduce (or eliminate) the power of the outgoing waves, this
disturbance is measured and fed to the structural actuator in a feedforward
scheme. This scheme is shown in Figure 2 where F�o� is the feedforward
compensator and Po is related to Pi and the actuator force Q by the scattering
matrix, S(o), and the generation matrix, CCC(o), as in
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Po�o� � S�o�Pi�o� �CCC�o�Q�o�: �12�
The models of the structure and control input are captured in S(o) and CCC�o�.
Unfortunately, the wave amplitudes are usually impossible to measure in

reality. Therefore, the control must be formulated using physically measurable
quantities, such as pressure and acceleration. Figure 3 shows a feedback scheme
block diagram which uses physical measurements, u. The compensator in this
scheme is denoted by G. The terms Yui and Yuo relate the physical measurements
to the incoming and outgoing wave amplitudes, respectively.
The block diagram of Figure 3 can be rearranged to put it in a form similar to

that of Figure 2. This rearranged block diagram is shown in Figure 4 and
illustrates the disturbance rejection problem where incoming waves are rejected
by feeding back physical measurements to the physical actuators.
The optimization problem becomes the minimization of the expected steady

state power ¯ow plus control effort. Summing over all frequencies gives the total
power ¯ow when the system is undergoing steady state motion. Adding a
quadratic control effort penalty to the power term in equation (10) and taking the
expected value of the resulting integral expression gives a scalar cost functional,

J � 1
2E

��1
ÿ1
�wHPmw� fHrf � do

� �

� 1
2

��1
ÿ1

tracefE�Pmww
H � rffH�g do, �13�
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Figure 2. Feedforward of incoming wave modes.
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where r is the control penalty, not to be confused with the ambient density r0. It is
assumed in the optimization that the only available feedback sensor is the pressure
at the structure±acoustic boundary, P. The optimization, then, is to ®nd a
compensator G(s) that minimizes equation (13) with

f � G�s�P: �14�
Up to this point, the derivation has been rather generic, equally applicable to

structural or acoustic systems. For the sake of brevity, however, the rest of the
derivation will be specialized for the system shown in Figure 1. Further details
on the minimization of the cost in equation (13) can be found in Miller et al. [5]
It can be shown (reference [8]) that at the structure±acoustic boundary the
outgoing re¯ected wave amplitude is related to the incoming wave amplitude and
the forcing on the structure by

wo � ms2 � �cÿ r0c0A�s� k

ms2 � �c� r0c0A�s� k
wi � r0c0s

ms2 � �c� r0c0A�s� k
f: �15�

Using the relations in equation (15) to minimize the cost, J, results in a
compensator transfer function,

Gr�s� � s�ms2 � �cÿ r0c0A�s� k�
den

, �16�

where

den � m2rs4 ÿmrr0c0As
3 � �2kmrÿ cr�c� r0c0A� ÿ r0c0�s2

ÿ krr0c0As� k2r: �17�
There are several things to note about this transfer function. First, if r � 0,

then the impedance matching result from reference [8] is recovered (see below):

G�s� � ÿ�ms2 � �cÿ r0c0A�s� k�=r0c0s: �18�
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Figure 4. Physical measurement feedback to mimic feedforward of incoming wave modes.
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The main difference between the compensators in equations (16) and (18) is the
presence of a control penalty, r. Unfortunately, the presence of the control
penalty makes the denominator have roots in the right half of the complex
Laplace plane. Because the system is open-loop stable, the feedforward
compensator must also be stable for the closed-loop system to be stable. Since
the compensator is stable and there are right half plane poles in the
compensator, Gr�s� is non-causal and requires information from future time.
The net result of the non-causality is that this compensator cannot be
implemented in practice and a constraint on the causality of the impedance
matching compensator must be imposed in the power ¯ow minimization.
The causal compensator which minimizes the cost in equation (13) can be

found by Wiener±Hopf techniques, which is discussed in more detail in Miller et
al. [5] Once again for the sake of brevity, since the solution is quite involved,
only the resulting causal compensator will be presented here. This compensator,
Gr,causal (s), is given by the expression

Gr,causal�s� � g2�s��ms2 � �c� r0c0A�s� k�=�2 ���
r
p

ocg1�s� ÿ r0c0sg2�s��, �19�
where

g1�s� � �s�
������
C1

p
��s�

������
C2

p
��ms2 � cs� k�, �20�

g2�s� � C3�sÿ p1��sÿ p2� � C4�s� oc��sÿ p2� � C5�s� oc��sÿ p1�, �21�

p1,2 � ÿ�c� r0c0A�=2m2
����������������������������������������������������
��c� r0c0A�=2m�2 ÿ k=m

q
, �22�

C1,2 � �ÿk=m� 1
2��c� r0c0A�=m�2 � r0c0=m

2r�

2
����������������������������������������������������������������������������������������������������
�k=mÿ 1

2��c� r0c0A�=m�2 ÿ r0c0=m2r�2 ÿ k2=m2

q
, �23�

C3 � 2o2
c�o2

c ÿ ��cÿ r0c0A�=m�oc � k=m�
m

���
r
p �oc �

������
C1

p ��oc �
������
C2

p ��oc � p1��oc � p2�
, �24�

C4 � ÿ2ocp1�p21 ÿ ��cÿ r0c0A�=m�p1 � k=m�
m

���
r
p �p1 ÿ

������
C1

p ��p1 ÿ
������
C2

p ��p1 ÿ p2��p1 � oc�
, �25�

C5 � ÿ2ocp2�p22 ÿ ��cÿ r0c0A�=m�p2 � k=m�
m

���
r
p �p2 ÿ

������
C1

p ��p2 ÿ
������
C2

p ��p2 ÿ p1��p2 � oc�
: �26�

The oc in these expressions comes from a frequency weighting on the
incoming wave amplitude. This frequency weighting takes the form of a unity-
gain low-pass ®lter,

Gf�s� � oc=�s� oc�: �27�
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The weighting serves two purposes, the ®rst of which is to emphasize the power
¯ow below a cut-off frequency, oc. The second reason for this weighting is that
it is necessary for proper conditioning of the LQG problem, which will be
explained shortly.
As expected, the compensator of equation (19) has only left half plane poles

and hence, is causal, making it possible to implement this compensator.
Although it appears rather complicated, the frequency response of this
compensator is actually rather similar to those of equations (16) and (18), as
might be expected, since they both minimize the same cost.
In the formulation of the power ¯ow minimization it was implicitly assumed

that the incoming waves are uncorrelated with the outgoing waves. Clearly, since
the structural±acoustic system is ®nite in extent, the outgoing waves will
eventually re¯ect from the acoustic boundary at the other end to return as
incoming waves, making this assumption invalid. Furthermore, there is no
guarantee that power will be dissipated by the compensator. In fact, the
compensator may amplify power in some frequency range to minimize it in
another. As far as the local compensator is concerned, this is not a problem, but
for a ®nite system, the combination of the return of outgoing power and power
ampli®cation can lead to instability for the fully reverberant system.
Several approaches can be used to address the possibility of instability [5, 10].

The ®rst approach [5] involves an iterative process where the causal compensator
is computed and the resulting closed-loop power ¯ow computed. If the closed-
loop power ¯ow is positive (ampli®cation) in any frequency range, the design
parameters are adjusted and the compensator recomputed. In the second
approach [10], the solution procedure may be constrained such that the closed-
loop power ¯ow is less than or equal to zero for all frequencies. The ®nal
approach involves trying to correlate the incoming waves with the outgoing
waves. This approach, however, requires information about the entire system,
which is to be avoided. The simplest of these, and the one used in this paper, is
the iterative approach, in which the control penalty is changed in response to
positive power ¯ow in any frequency range.
The complexity of the solution for this very simple sample problem is proof

enough that a better method for obtaining the causal impedance matching
compensator with ®nite control penalty is needed. Thus, this power ¯ow
approach and solution provides motivation for the use of a simpler and more
automated method for deriving the compensator. This simpler method is found
in the LQG design technique using a state space structural model with local
acoustic coupling.

3. LQG IMPEDANCE MATCHING DESIGN

The linear quadratic Gaussian (LQG) design technique is a well known design
technique consisting of two parts, the regulator and the estimator. LQG
determines a compensator, with regulator gains G and estimator gains H, of the
form
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_̂x�t� � �Aÿ BGÿHCy � BDyuCy�x̂�t� �Hy�t�, u�t� � ÿGx̂�t�, �28, 29�

which minimizes the quadratic cost given by

JLQG � 1
2E

��1
ÿ1
�xHCT

zQCzx� uHru� do
� �

, �30�

subject to the constraints

_x�t� � Ax�t� � Bu�t� � Lx�t�, y�t� � Cyx�t� �Dyuu�t� � Z�t�, z�t� � Czx�t�,
�31±33�

where x and Z are Gaussian white noises representing process noise and sensor
noise, respectively. The vector y represents the sensor measurements, while z
represents the performance variables.
Comparison of equation (30) with the power ¯ow cost of equation (13) reveals

that they are nearly identical. The only difference between the two is the choice
of state variables and the difference in weighting matrices, Pm versus Q. Thus, it
becomes clear that if the state variables in the power ¯ow case can be related to
the performance variables in the state-space system and Q can be related to the
power matrix, Pm, then LQG may arrive at the same solution as the power ¯ow
minimization.
Since LQG is a state-space technique, the structural equation of motion in

equation (2) must be put in second order form:

_u

�u

� �
� 0 1
ÿk=m ÿc=m
� �

u
_u

� �
� 0 0

1=m ÿA=m
� �

f
P

� �
: �34�

The total surface acoustic pressure is shown as a disturbance in the state-space
system. However, a portion of this pressure is created by the motion of the
structure and is therefore correlated with its dynamics. In order to have an
uncorrelated disturbance, the more natural disturbance is the pressure associated
with an incoming acoustic wave. It then follows that the most natural
performance variable is a combination of the incoming and outgoing acoustic
pressure waves, i.e. the power. The natural feedback sensor measurement is total
surface acoustic pressure, because it can be physically measured. Fortunately,
relations between the total surface acoustic pressure and the incoming and
outgoing pressure wave amplitudes can be determined from equations (3) and
(9). These relations are

wo � wi � r0c0 _u; P � 2wi � r0c0 _u: �35, 36�

This results in the following state-space system

_u
�u

� �
� 0 1
ÿk=m ÿ�c� r0c0A�=m
� �

u
_u

� �
� 0 0

1=m ÿ2A=m
� �

f
wi

� �
, �37�
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y � P � �0 r0c0� u
_u

� �
� 2wi, z � wi

w0

� �
� 0 0

0 r0c0

� �
u
_u

� �
� 1

1

� �
wi: �38, 39�

The fact that there is a feedthrough term from the disturbance wi in the
performance equation (39) implies that there is in®nite energy in the disturbance
to performance transfer function and cannot be altered by the control. In order
to avoid this situation, a unity gain low pass ®lter can be added to the
disturbance input, which results in the state-space equations

_u
�u
_wi

24 35 � 0 1 0
ÿk=m ÿ�c� r0c0A�=m ÿ2A=m

0 0 ÿoc

24 35 u
_u
wi

24 35� 0
1=m
0

24 35f� 0
0
oc

24 35x,
�40�

y � P � �0 r0c0 2�
u
_u
wi

24 35, z � wi

wo

� �
� 0 0 1

0 r0c0 1

� � u
_u
wi

24 35: �41, 42�

This set of state-space equations are the ®nal set from which an LQG
compensator is determined. Power ¯ow minimization does not make provisions
for sensor noise but LQG does. In order to maintain consistency between the
two solution methods, the estimator gains for LQG must be determined using a
sensor noise intensity approaching zero. The sensor noise cannot be exactly zero
due to constraints on the Riccati equation. The last step is to determine the
weighting matrix Q. Since the performance variables are the incoming and
outgoing pressure wave amplitudes, the obvious choice for Q is simply the entire
Pm matrix. In order to guarantee a positive de®nite solution to the regulator
Riccati equation, though, Q should be positive semi-de®nite, which is not the
case for Pm. This does not mean, however, that there is no solution to the
Riccati equation. It is a reasonable assumption that there will be a solution to
the Riccati equation since the direct power ¯ow minimization found a solution.
Alternatively, the performance could just include outgoing power which does
provide a positive semi-de®nite Q.
The assumption that the outgoing and incoming waves are uncorrelated has

also been made for the LQG case. In a similar manner as the power ¯ow
minimization, an iterative procedure is implemented using LQG, in which the
closed-loop power ¯ow is computed. If the power ¯ow is positive at any point,
the design parameters are adjusted and the compensator rederived.
The LQG regulator and estimator gains G and H are derived from two

uncoupled algebraic Riccati equations. Due to the low order of the system under
consideration, it might be tempting to try to analytically solve the two Riccati
equations. Unfortunately, even this very small system leads to algebraic
expressions that cannot be analytically solved. Thus, the only remaining option
is to evaluate the LQG compensators numerically.
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4. POWER FLOW±LQG EQUIVALENCE

In order to compare the power ¯ow and LQG compensators, the system
parameters of Figure 1 must be given numerical values. The single-degree-of-
freedom ``structure'' is sized to give a modal frequency of 37 Hz with 1%
damping (m=0�727 kg, k=3�936104 N/m2, c=3�38 Ns/m). The acoustic
waveguide is then sized to give a fundamental acoustic frequency of 56 Hz
(r0=1�2 kg/m3, c0=346 m/s, A=0�0491 m2, L=3�09 m). These values are
sized such that the fundamental structural and acoustic frequencies match those
of a typical payload fairing.
Using these parameter values, the power ¯ow and LQG compensator

frequency responses can be computed for a given control penalty, r. Figure 5
shows the frequency response of the causal power ¯ow compensator of equation
(19) for different values of r. Figure 6 shows the frequency response of the LQG
compensator (with nearly zero sensor noise) for the same values of r as in
Figure 5. In both plots, the compensator magnitude increases as the control
penalty decreases. Also, the dashed line in both plots is the frequency response
of the unconstrained power ¯ow compensator with zero control penalty, given
by equation (18). Note in both cases that as the control penalty is decreased
toward zero, the compensator frequency responses approach the unconstrained
power ¯ow compensator of equation (18). This is to be expected from the power
¯ow compensator. For the LQG compensator, however, this fact provides
evidence that the LQG formulation of the previous section is indeed the proper
one to use to derive an implementable impedance matching compensator.
Careful comparison of the power ¯ow frequency response with the LQG

frequency response reveals that for a given value of r, they are identical. This
shows that with the proper system formulation and weighting matrices, LQG
returns the same compensator as power ¯ow minimization with the causality
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constraint. While this example is rather academic, the impact of this result on
realistic systems is enormous. An impedance matching compensator can be
derived from a model of an enclosing structure and its local acoustic coupling.
Closed-loop stability of a control system is always an important issue,

especially in this case, where the design model and truth model are not identical.
As mentioned previously, the power ¯ow at the structural±acoustic boundary
can be used to evaluate stability. If the power ¯ow is negative at all frequencies,
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Figure 6. LQG compensator frequency response for decreasing values of r.
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indicating power dissipation, the fully reverberant closed-loop system will be
stable. Figure 7 shows the power ¯ow transfer functions for the compensators in
Figures 5 and 6. Note that the open-loop power ¯ow, dashed line, is always less
than or equal to zero, indicating open-loop stability. The large dip at 37 Hz in
the open-loop power ¯ow transfer function is due to the dissipation in the
structural dashpot. Note that all closed-loop power ¯ow transfer functions are
also less than or equal to zero, again indicating stability of the fully reverberant
system. Since the power ¯ow compensator is single input, single output (SISO),
standard frequency domain techniques can also be used to evaluate stability of
the reverberant system. Figure 8 shows the Nichols chart for one of the LQG
compensators evaluated on the fully reverberant model. Note that there are no
encirclements of the critical points, denoted by ``x'', and the reverberant closed-
loop system is stable.

5. EXTENSION TO HIGHER DIMENSIONS

To illustrate the LQG power ¯ow compensator design on a more realistic (i.e.,
higher dimensional) system, the sample problem in Figure 9 is considered. This
sample problem consists of a two-dimensional acoustic cavity with a ¯exible wall
on the left side that behaves like a simply supported Bernoulli±Euler beam. In
the bottom right corner of the cavity is a disturbance source much the same as in
the one-dimensional case. The parameters of the system are again set such that
the fundamental structural mode is 37 Hz and the fundamental acoustic mode is
56 Hz. This sample problem, while fairly simple, actually captures all the
essential features of real structural±acoustic systems, namely a multi-dimensional
acoustic ®eld, a structure with distributed mass and stiffness, and the possibility
of distributed actuation and sensing.
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Figure 8. Nichols chart for stability of LQG power ¯ow compensators.
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The ®nite element method is used to model the beam and as such there are
two degrees of freedom at each nodal point, displacement and its spatial
derivative: rotation. A ®nite element model is chosen because this is the most
likely structural model available for designing a power ¯ow compensator in a
realistic situation. The available actuators for the beam are forces and moments
at each beam degree of freedom.
The structural ®nite element model consists of mass, stiffness, and damping

matrices, Ms, Ks, and Cds. A modal model is also a possibility, but is not
considered here. While damping matrices are not typically part of the ®nite
element formulation, an ad hoc damping matrix may be determined from the
structural mode shapes and the modal damping ratios. Along with the ®nite
element matrices is the actuation matrix, B, containing the in¯uence of the
forcing terms on the structure. To complete the necessary elements for the LQG
formulation the local coupling between the structure and the acoustic ®eld must
be determined. This may also be performed using the ®nite element method by
assuming shape functions in terms of nodal acoustic variables [11]. This results
in a matrix, Afs, which describes the in¯uence of the acoustic ®eld on the
structure, much the same as the actuation matrix, B. The matrix Afs can be
thought of as a generalized area matrix, containing the nodal area for each
structural element. This results in a state space system of the form

_~u
�~u

� �
� 0 I
ÿMÿ1s Ks ÿMÿ1s Cds

� �
~u
_~u

� �
� 0 0

Mÿ1s B ÿMÿ1s Afs

� �
~f
~P

� �
, �43�

where ~u is the vector of structural displacements, ~f is the vector of structural
forcing terms, and ~P is the vector of surface acoustic variables.
The simplest acoustic ®nite element formulation uses only the pressure at each

nodal point. In this case there is a mismatch between the number of structural
nodal degrees of freedom (2) and the number of acoustic nodal degrees of
freedom (1). It can be argued that the missing acoustic variable is the pressure
gradient tangential to the surface of the structure. It is intuitively obvious from
the simple one-dimensional problem that pressure is analogous to structural
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Figure 9. Two-dimensional acoustic cavity with a ¯exible wall.
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displacement. Therefore, since the extra structural degree of freedom is the
spatial derivative of displacement along the axis of the beam, it seems reasonable
to assume that the missing acoustic variable must also be a derivative along the
beam axis, i.e., the tangential acoustic pressure gradient.
Several options are available to resolve this discrepancy. The ®rst is to simply

ignore the mismatch in both the structural±acoustic coupling and incoming/
outgoing acoustics, using only pressure variables in formulating the LQG
problem. The second option is to again ignore the missing acoustic variable in
the structural±acoustic coupling, but to approximate it in the incoming/outgoing
acoustics, using the acoustic element shape functions to ®nd the missing acoustic
variables. The ®nal option is to augment the acoustic nodal degrees of freedom
with the missing variable, hence including it in both the structural±acoustic
coupling and incoming/outgoing acoustics. However, because this extra degree
of freedom is needed only for the local model, it need not be included in a global
model used for control evaluation. The last method is used here because it
contains the most information about the acoustic ®eld. Consequently, controllers
designed using this model attain the highest performance.
The rest of the LQG formulation proceeds exactly the same as for the one-

dimensional case. The total surface acoustic variables and outgoing acoustic
variables are related to the incoming acoustic variables through

~Po � ~Pi � r0c0 _~u, ~P � 2~Pi � r0c0 _~u: �44, 45�
Once again low-pass shaping ®lters must be added to the incoming acoustic
disturbance, resulting in the following state space system, which may be used in
LQG with low noise sensors.

_~u
�~u
_~P

24 35 � Alocal

~u
_~u
~Pi

24 35� 0
Mÿ1s B

0

24 35~f� 0
0
ocI

24 35~o, �46�

Alocal �
0 I 0

ÿMÿ1s Ks ÿMÿ1s Cdfs ÿ2Mÿ1s Afs

0 0 ÿocI

24 35, ~y � ~P � �0 r0c0I 2I�
~u
_~u
~Pi

24 35,
�47, 48�

~z � ~Pi
~Po

� �
� 0 0 I

0 r0c0I I

� � ~u
_~u
~Pi

24 35, Q � 2

r0c0
ÿAfs 0
0 Afs

� �
: �49, 50�

For comparative purposes, Figure 10 shows a contour plot of the open-loop
r.m.s. pressure map. The pressures shown in Figures 10 and 11 are those that
arise due to a white noise disturbance emanating from the bottom right corner
of the acoustic cavity. Figure 11 shows a similar contour plot for the closed-loop
r.m.s. pressure map for a LQG power ¯ow compensator with full actuation,
meaning that each structural degree of freedom has an associated actuator. Note
that the closed-loop pressure is much smaller than in open-loop example,
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decaying smoothly from the disturbance source on the right side to the ¯exible
wall on the left side. This feature is typical of power ¯ow compensators, which
cause the structure to interact with the acoustics as if it were an in®nite cavity of
¯uid. This effect essentially destroys all modal behavior in the cavity. If acoustic
modes were still present, they would show up in the pressure map as several
localized peaks or hotspots. Because the beam has full actuation, the
compensator is able to achieve an essentially perfect impedance match of the
acoustics.
Figure 12 shows the open- and closed-loop power ¯ow transfer functions at

the ¯exible wall for the two-dimensional sample problem. Since incoming power
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Figure 10. Contour plot of open-loop r.m.s. pressure map.
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is de®ned as negative, negative power ¯ow indicates that more power is incoming
than outgoing at a particular frequency. Because the structural±acoustic system
is open-loop stable, the open-loop power ¯ow should be less than or equal to
zero for all frequencies. Inspection of Figure 12 shows this to be the case. The
negative spikes in this transfer function occur at the structural resonances and
indicate that power is being dissipated by the damping in the beam. Thus, the
acoustics excite the beam at its natural frequencies and the beam dissipates
energy by structural damping mechanisms. The roll-off in the open-loop power
¯ow transfer function is due to the frequency shaping of the disturbance. The
closed-loop power ¯ow is much lower than for the open-loop, indicating good
performance. The fact that the closed-loop power ¯ow is negative for all
frequencies indicates that power is being dissipated at all frequencies, indicating
that the reverberant closed-loop system will be stable. A check of this fact using
the fully coupled model shows that, indeed, it is stable.
In this example, the structural model used in the dereverberated control design

model and the fully reverberant evaluation model are identical. In practice,
however, this will seldom be the case, as the structural model will always have
some error compared to the real system. LQG methods tend to be very sensitive
to these errors, often resulting in closed-loop instability. Over the last decade,
however, tremendous progress has been made in the ®eld of H2 robust control
for uncertain structural systems, see reference [12] for a survey of robust H2

control techniques. Because the power ¯ow cost functional was cast as an H2

problem, all of these robust control design tools are available for use in the
structural±acoustic power ¯ow control problem.
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In the present paper, the LQG power ¯ow technique was derived using an
acoustically dereverberated state-space model based on a structural ®nite element
model. This state-space model uses structural degrees of freedom as the states of
the model and the full mass, stiffness, and damping matrices in the formulation
of the state transition (A) matrix. For realistic systems, which typically have
many thousands of degrees of freedom, this physical control design model will
be of too large an order to be useful. Fortunately, a much lower order
formulation for this acoustically dereverberated design model is also possible
[13], in which the full structural model is replaced with a modal representation
and the full local acoustic model is replaced with a set of incoming and outgoing
acoustic power ¯ow ``modeshapes''. At present, the LQG power ¯ow control
design technique has only been formulated for the case where a structural ®nite
element model is available or can be constructed. For most practical structures,
this is not too great an assumption.
The only requirements for practical implementation of this power ¯ow control

methodology are a ®nite element model of the enclosing structure (or modal
representation), a model of the coupling between the structure and the acoustic
®eld at the structural boundary, and a description of the outgoing acoustic
waves from the structure. The structural model, including the structural
actuators and sensors, is the most readily available of these. Either the full
physical model or a reduced modal model can be used for the structural model.
The coupling model describes the in¯uence of a unit pressure at the boundary on
the displacements of the structure [11]. This coupling model can be thought of as
a generalized area matrix because the pressure acts on the area of an element
and in a manner similar to structural mass matrices can be lumped or consistent.
The area for a given element is broken up into effective areas for the nodes that
form the vertices of the element. For a lumped matrix, the effective areas for
each element that includes a given node are summed up. In the consistent
matrix, however, there is coupling between the pressure on a given node and the
displacements at neighboring nodes. Note that pressure acts normal to the
structural surface, so care must be exercised when determining the coupling
matrix to account for this fact. The outgoing acoustic waves are described by
equation (44) for each of the nodes at the structural±acoustic boundary. With
the description of the outgoing waves, the procedure in equations (46)±(50) can
be applied. Typically, however, there will be many thousands of nodes at the
structural±acoustic boundary, making the book keeping task for the incoming
and outgoing acoustic waves daunting. A way to alleviate this book keeping task
is to use a set of incoming and outgoing acoustic wave ``modeshapes'' in a
manner similar to that for the structural modal model. Care must be exercised,
however, that the chosen ``modeshapes'' span the incoming/outgoing waveforms
that would typically be encountered. A good set of ``modeshapes'' to use is the
lowest several rigid-walled acoustic eigenvectors evaluated at the structural±
acoustic boundary. The last step is to include in the local model any acoustic
sensors at the structure±acoustic boundary that will be used for feedback, which
is performed using equation (45). Once this is done, the power ¯ow control law
is determined using the LQG (possibly robusti®ed) design technique.
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As mentioned previously, this structural model will be in error to some degree.
An alternative to the analytical model is a model determined from system
identi®cation methods, which are typically much more accurate than the
analytical methods. At present, though, formulations of the LQG power ¯ow
technique using identi®ed models have not been constructed. One problem with
identi®ed models is that the identi®ed models only capture behavior that can be
physically measured. The power ¯ow formulation, however, requires
performance outputs and disturbance inputs that are not physical, such as the
incoming and outgoing pressure wave amplitudes. Future research, therefore,
will be directed toward obtaining LQG power ¯ow formulations that have
relaxed measurement requirements so that identi®ed models may be used.

6. CONCLUSIONS

The primary method for deriving an impedance matching compensator
involves minimizing the power ¯ow at the structure±acoustic boundary. This
solution method is quite complicated even for very simple problems, making its
application to realistic systems impractical if not impossible. Fortunately, the
power ¯ow minimization can be recast in terms of an LQG problem using a
structural model with only local acoustic coupling. The LQG method has been
shown to be equivalent to the power ¯ow method for a simple structural±
acoustic sample problem. In the LQG framework, realistic problems can be
handled with ease. This has been demonstrated for a relatively simple two-
dimensional sample problem that captures all the essential features of the
realistic acoustic launch load alleviation problem.
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APPENDIX: NOMENCLATURE

���H complex conjugate transpose
c0, r0 speed of sound and ambient density of acoustic medium
f, ~f structural force, forcing vector
i imaginary number (

�������ÿ1p
)

k̂ acoustic wave number
m, k, c scalar mass, spring, and damper values
s Laplace variable
u, _u, �u structural displacement, velocity, acceleration
wi, wo incoming and outgoing propagating wave amplitudes
y, z state space sensor measurements, performance variables
A cross-sectional area
A, B, C, D state space matrices
Afs ¯uid±structure coupling matrix
E��� expected value operator
G, H LQG regulator and estimator gains
G�s� compensator transfer function
I identity matrix
J scalar cost function
Ms, Ks, Cds structural mass, stiffness, and damping matrices
Q linear quadratic regulator state weighting matrix
P acoustic pressure
Pl, Pr leftward and rightward propagating acoustic wave amplitudes
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Pi, Po incoming and outgoing propagating acoustic wave amplitudes
P average power ¯ow
Pm structure±acoustic boundary power matrix
Z, x sensor noise, process noise
r penalty on control effort
o frequency
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